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Fermion systems and the Moyal formulation of quantum 
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Absinct. Wigner funaims of pennuerion operators we obtained and serve as a basis for a 
phase-space formulation of qwnhlm ;-spin identid fermions. We prove 3 version of the Pauli 
principle for this typ of particle. 

1. Introduction 

The aim of the present paper is to discuss some aspects of the theory of $spin identical 
particles in the context of the Moyal formulation of quantum mechanics [l]. This 
formalism treats quantum states and observables as functions on a suitable phase space. 
The correspondence with the standard formalism for quantum mechanics is given through 
the Weyl map 121, which may also be called the Weyl correspondence, and its inverse. An 
operator on Hilbert space is assigned by the latter a function on phase space-its Wigner 
function [3]. 

The phase space suitable for a description of a $-spin particle in three-dimensional 
configuration space is the Cartesian product of Et6 with the three-dimensional hollow sphere 
.L? [4,5]. W6 includes the positions and momenta and Sz includes the spin. For a system 
of N identical particles, we can use the Cartesian product of N copies of B6 x S2 as the 
phase space. If only spin variables are relevant, the phase space is (S2)N, the product of N 
times the sphere. 

We define the Weyl mapping through the Stratonovich-Weyl kernel [a] given by 

W U , ~ )  = IT(uI) ..... I T n ( z l ~ ) ~ A ( n i ) ~ . . . . A ( n ~ )  (1) 

where IT(u1). i = 1,2,. . . , N are the Grossmann-Royer operators defined in [4.5,7.8], 
ui = (qi, pi) denotes the coordinates of the position and momentum of the ith particle and 
A(n,), i = 1,2,. . . , N are the operators on C2 given by 

where nj represents both a point in the ith sphere and its corresponding unit position vector. 
Here, 
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C($, 1 . 4 ;  s, ( r  -s), r )  are Clebsch4ordan coefficients and 
kets I+) and I-) in (2) are the eigenvectors of the z component of the spin. 

L2(R6N) c3 CZN given by (henceforth, we will use h = 1): 
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spherical harmonics. The 

The Weyl correspondence maps a function f (U, n) on @p6 x S Z ) N  into the operator on 

This expression admits an inversion formula that gives the Wigner function of  the 
operator W(f) as 

f(-, n) = w - ' t w ( f ) l =  trtW(f)WU, 4 1 .  (5) 

As customary, we define the twisted product of two functions on (R6 x S 2 ) N  by 
(f x g ) ( u ,  n) = W-'[W(f)W(g)l. This twisted product can be written in integral form 
as [461 

(6) 

where 

(i) L(u,  v ,  w) = (n)-6Nexp[2i(uJv + VJW fwJu)] and J = (:,6). (7) 
I is the 3N-dimensional identity matrix. 

sin Ode dp. The same is true for dk. 
(ii) d m  = d m l  . . . dmN, where dmi is the Liouville measure on the ith sphere, i.e. 

(iii) The integral kernel L(n, m, k) is L(n, m. k) = n,"=, L(nj. mi, ki), where 

L(n;. mi, ki) = (kr{l +3(ni.mi+mi .k, + k ; . n ; ) + 3 ~ i [ n ; , m i , k i l ) .  (8) 

If we have a system of particles for which we do not consider either the spin or orbital 
part, their states and observables as functions on phase space will only depend on U and 
n respectively. Their twisted product can be defined in these cases by omitting the non- 
relevant part in the kernel and integral in (6) in an obvious manner. 

Let H be a Hamiltonian on phase space and W ( H )  its image by the Weyl map. Let 
U ( t )  be the evolution operator produced by thk Hamiltonian (U@) = e-irW(H) if H is 
time independent). We define the Moyal propagator for H as =(U, n, t )  = W-'[U(t)]. 
Its Fourier transform with respect to the time variable t gives the spectral projections 
parametrized by E :  

Vu, n, E )  = - %(U, n, ()eiE' dt. 
2 x  (9) 

The interest of the spectral projections lies in the fact, proven at least for a class 
of operators including quadratic Hamiltonians [91, that the support on E of r(u, n, E )  
coincides with the spectrum of the Hamiltonian W(H) and, hence, gives the quantum 
levels of energy of our system [lo]. 
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In the standard formalism of quantum mechanics, the Hilbert space of states of a system 
of N $-spin fermions is the space of the wavefunctions which are antisymmetric under the 
exchange of two particles. This Hilbert space is obtained if we apply to 'H = L Z ( W 6 N ) ~ C z N  
the orthogonal projection given by P- = ( I / N ! ) ~ , E S ~ ( - l ) O R o .  SN is the group of 
permutations of N elements. For any U E S N ,  we define the operator R, on 'H as 
R , W C I , X Z , . . . , Z N )  = ~ ( X ~ ( I ) . ~ ~ ( Z ) , . . . , ~ ~ ( N ) ) ,  where @(xl,xz, ..., x ~ )  E 'H. The 
label xi denotes the coordinates of the position (or momentum) and spin of the ith particle 
and (-1)O i s  the parity of U .  We can decompose R, = P,Q,, where Po and Q,, produce 
the permutation U on the orbital and spin variables respectively. If B is an observable or an 
state on 'H, i.e. in the system before one introduces the notion of identity of the particles, 
its corresponding operator for the system of N identical fermions is the result of projecting 
B onto 'H- = P-31, as the result of introducing the statistics. This projection is P-BP-, 
which is equal to BP- = P-E,  whenever B is invariant under the exchange of particles. 
In this latter case, B leaves 31- invariant. 

The Wigner function of P-BP- is W-'(P-BP-) = W-'(P-) x W-'(B) x W-I(P-), 
Therefore, in order to obtain the function on phase space that describes either an observable 
or an state of a system of N identical fermions, we must obtain p-(u, n) = W-](P-) ,  
the Wigner function of the projection P-. To do it. one appeals to the linear character 
of W-' .  Thus, p-(u,n) = ( l / N ! ) ~ ~ ~ ~ ~ ( - I ) a W - l ( P ~ ) W - l ( Q ~ ) .  We recall that the 
twisted product of two functions on disjoint sets of variables coincides with their ordinary 
product Therefore, to obtain the Wigner function of an operator representing a state or 
observable of a system of N identical fermions, one needs to find the functions W-'(P,) 
and W-'(&). Note that W-l(P,) is defined on the flat phase space (R6)N and W-'(Q,,) 
on ( S 6 ) N ,  which makes sense, since P, permutes orbital variables and Q, spin variables. 

To obtain the Wigner function for P, one must realize that any permutation of N 
elements can be written as a product of cyclic permutations or cycles with no common 
elements. If according to this decomposition, U = U] . . . uk, with ui a cycle, i = 1,2, . . . , k, 
we have Pc = Pol . . . PcL. These operators commute, since each one permutes a different set 
of variables. Therefore each of the W-'(P,,;), i = I ,  2, . . . , k is a function on a different set 
of variables and, consequently, W-'(P,) = W - l ( P c , ) W - l ( P r J . .  . W-'(PUh). To obtain 
W-'(Pn), where U is the cyclic permutation U = (I, 2 , .  . . , M), we use the Wigner formula 

(10) U ( U I , U Z , .  .., UM) = W-'(Pc)(u1,. .  . , U M )  = ( 4 -  kvlP,Iq+ $v)eipwddy s 
with ui = (q j ,p j ) .  After some algebra (10) yields , 

I M 
x exp - 2i (-l)'+'ukJu~ M even. I k=l:l>k 

Here, 8 is the Dirac delta and J has been defined in (7). As an example, if U is the two 
cycle which exchanges the variables i and j ,  one has, after (1 I), 

uz,. . . , = w-~(P,) = (zrr)3qui - uj). (12) 
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To evaluate W - l ( Q C ) ,  we use the formula W-'(Q.,) = t r { Q o A ( n ) } ,  which is obtained 
from (5) by recalling that Q ,  affects spin variables only and that the Grossmann-Royer 
operators have trace one (in a generalized sense). This trace can easily be evaluated for any 
n E SN and the final result is 

w-'(Qc) = C Z b , ( g b , ( n I ) Z b . ~ , ~ ( ~ ) ,  .. zbs(,v,b,v(nN) (13) 

where summation extends to all choices of the bi = - or +. 
Now, let H be a function on phase space such that its image by the Weyl mapping, 

W(H), is an operator representing the Hamiltonian of a system of N ;-spin particles, without 
considering the statistics. If we look at them as identical fermions, the true Hamiltonian is 
W ( H ) P -  and its Wigner function is H x p- (u ,  n). We consider this function as the phase- 
space Hamiltonian of the system. The Moyal propagator associated with this Hamiltonian is 
=-(U, n, t )  = =(U, n, t) x W-I(P-) ,  where =(U, n, t) is the Moyal propagator associated 
with H. One obtains this formula from the expansion of the propagator in terms of the 
Hamiltonian. Similarly, we get the formula for the spectral projections as 

r-(u, n, E) = (r x p - ) ( ~ ,  n, E )  (14) 

where, again, r(u, n, E) are the spectral projections for the Hamiltonian H. 

Remark on the notation. The function p-(u ,  n) may depend on the orbital or the spin 
variables only. In the first m e ,  we denote it as +(U) or, more frequently, p - ( u l , .  . . , U N )  

where N is the number of particles. In the second, p-(n) as well as p-(nl, nz, . . . , n~). 

2. The Pauli principle 

The aim of this section is to present a version of the Pauli principle in the context of the 
Moyal formalism of quantum mechanics. To begin with, we consider a system formed 
by two b-s ins. As already mentioned, the phase space suitable for a description of this 
situation I S  Sz x Sz, the Cartesian product of two two-dimensional spheres. One of our 
goals is to obtain the function p - ( n l ,  nz) = W-'(P-) ,  nj E Sz. i = 1,Z. To achieve it, we 
have to obtain the functions qlz(n1, n z )  = W-l(Q0), where U is the two-cycle exchanging 
the labels 1 and 2. After (13). we have that 

2. p 

~ ~ I z ( w . ~ z )  = C Z , ~ ( ~ ~ ) Z , , ( ~ Z )  r , s  = +, -. (15) 
r,s 

The explicit ..om of the functions Z,, can be found in [SI. They are 

ztt(n) = ;(1+1/5cos0) 

z--(n) = '(1 -&cose) 

zt-(n) = q s i n e e - "  

(16) z-,(n)= TssmOe". 4 7 '  Z 

Substitution of (16) in (15) gives 

(17) 1 3  q ~ z ( n l ,  nz) = 5 + ?(cos01 cos& + sin01 s i n 6  cos(pl - a)) = $ + . nz). 

Hence, 

(18) 
p-=z( l -3n l - ?Zz) .  1 
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The next step in our investigation is to find the most general form that a Wigner function 
can have on the sphere Sz. Since, in any case, we must have 

(1 x f)(n) = f (n) (19) 

if we use the kernel given in (8) for N = 1, we obtain 

f ( n ) = A + E * n  (20) 

with 

A = k L  f (k) . dk E = $ k[ f (k) . dkl. 

The Wigner function of an arbitrary 4-spin state has been obtained in [SI. Assume that 
p is the density operator corresponding to such a state. Then, there exists a unit vector a, 
such that 

p = .1+)(+1 +pl-)(-l 0 4 (I, p 4 1 a+B = 1 (22) 

where I+) and I-) are the eigenvectors of (S a). The Wigner function of p is [5] 

(23) 

(23) is easy to obtain from W&) = tr[A(n)p] with the aid of (16). One sees that, in 
the present case, A = and IBI < 8 / 2 .  W,,(n) represents a pure state if and only if 
IB( = 4'3/2. On the other hand, W,,(n) is positive if and only if (a - p [  4 a / 3 ,  which 
means that no pure state can have a positive Wigner function. 

Remark. W considered as a mapping between functions on S2 of the form given in (20) 
and operators on C2 is one to one. From the considerations in the introduction, we can 
deduce that if f (n) is such a function, its corresponding operator F can be written as 

1 8  W,(n) = -j + -(a - /3)a * n. 
2 

However, we could apply (24) to an arbitrary function f(n) on S2 to obtain an operator 
on C2. Thus, to any operator F there is a corresponding class of functions. Only one 
representative of this class is of the form (20) and it is called the Wigner function of F. 

Now, let us pick two f-spins. Their states are given by the Wigner functions f(n1) 
and g(n2). Then, the ensemble is in the state f(nl)g(nz) which is a function on Sz x Sz. 
One may expect that the twisted product of this state by 1~12 on both sides will exchange 
the roles of both spins. In fact, if we recall that these states must have the form 

f(nl) = A + B  g(n2) = C t D*nz (2.5) 

we can prove that 

V I Z  x f(nl)g(%) x V I Z  = f(nz)g(nl). (26) 
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To prove (26) one has to apply the definition of the twisted product given in section I and 
proceed with the integrals that arise. ' Ib is  calculation is somewhat cumbersome and does 
not provide any new insight so we omit it. (25) also bas an important consequence: 

M Gadella and L M Nieto 

P - ( ~ I , ~ z )  x f (n l )g(nd  x ~ - ( n l , n ~ ) = ( A C - f ( B . D ) ) p - ( n ~ , n ~ ) .  (27) 

One obtains (27) by a direct calculation from (26) using (25). 
Since the spins are fermions, (27) represents the true state of the ensemble. When does 

(27) vanish identically? Obviously, when $ B . D  = AC. Since f(n1) and g(n2) are states, 
they must be of the form of W,(n) in (25). Thus, AC = 4 and IBI, ID1 6 &/2. Then, 
the condition is B D = = lBllDlcosw =$ IBI = [Dl = &/2 and w = 0. This 
means that f(n1) and g(nz) must represent the same pure state. The converse is obvious: if 
f(n1) and g(n2)  are the Wigner functions for the same pure state, (27) vanishes identically. 
Consequently, we have obtained a restricted version of the Pauli principle. This result can 
indeed be improved, as we verify after the following statement. 

Proposition. 

Proof. We prove the proposition for N = 3 first. To begin with, we write the six 
permutations of three elements and decompose them as a product of two cycles, which 
is an easy exercice. After that, the expression for p -  is easy to find: 

p-(nl ,  n 2 , .  . . , n ~ )  = 0 for N > 3. 

p-(nl, ~ Z S  n3) = - 72.3 - '712 + '723 x 1112 + VIZ x '723 - 713). (28) 

We want the explicit form of the twisted products in (28). To obtain it, we note that 
(17) can be written in general as 

qi j (n i ,  nj) = ; i- ;T I i .  nj 

which yields 

(723 x V I Z N ~ I ,  ~ 2 .  n3) = (Ay / dml dmzdm3 d h  d ~ Z d ~ ~ ( ~ + ~ m z ' m 3 ) ( 1 + ~ k l ~ Z )  

x n ( l + 3 ( n i . m i + m i  -k i+~c i  .n i )+i3&[ni ,mi , l~i l ) .  (29) 
3 

i=l 

From (29). one has 

(vu xrl iz)(ni ,nz3n3)= +(1+3(ni .nz+n2.n3+n3.ni)+3&i[~11,122,n31t.(30) 
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For N = 4, one sees that 

1 P-(nl, 7121 n3r n4) = z{p-(%., n39 n4) - ??I34 x p-(nl, n39n4) 

f q 3 1 2 4  xp-(nl,nZ.n4)-~4123 xp-(nl,nZ,n4))=O (33) 

where, for instance, ~ 3 1 %  = q(n1, n2, 7~3.714)  and this is the Wigner function of the operator 
that, in the space of spins, produces the permutation 

u = ( 3  1 2 ) .  (34) 

One proves the corresponding result for higher values of N by induction. 

Remark. It is also true that, in the usual formalism of quantum mechanics, that P- = 0 
for systems of three or more spins. To show this for N = 3, we write the six 6 x 6 matrices 
Po to obtain P- = 0. Again, we extend this result to any N > 4 by induction. 

From the proposition, one concludes that the antisymmetrized state function on the phase 
space of a system of thee or more pure spins vanishes. This, along with the consequences 
of (26), proves the Pauli principle for a system of pure spins. 

we can also prove a restricted version of the Pauli principle for $-spin systems for 
which we consider orbital coordinates. To do this, we first state the following lemma: 

Lemma. Let uij be the permutation that exchanges the variables i and j ,  and let 
ujj(u~. ..., U N )  = W-'(PC,,). If p(u1, .  . . , UN) is an arbitrary function on then 

(uij x p x U i j ) ( u l , .  . . ,ut,. . . , uj, . ..,UN) = p(u1, .  . . , uj, . . . 9 ut,. . .,UN). 

case, the integral on the angular variables in (6) is equal to one. 

(35) 

Proof. We prove it by a direct calculation using formula (6). We have to note that, in this 
0 

Now, we state our next result: 

Theorem. Assume that in a system of N identical $-spin fermions, then 
(i) two of them are in the same quantum state; and 
(ii) these two states are pure and, on the phase space, can be written as a product of a 

Then, the state function of phase space (Wgner function) of the N-particle system 
function of the orbital variables multiplied by a function of the spin variables. 

vanishes identically. 

Proof. We start with a system of two identical $-spin particles, both in the same pure state. 
This means that their respective Wigner functions are identical and equal to ~ ( u ,  n). defined 
on the phase space (E@ x S2) x (R6 x S'). Thus, the Wigner function of the compound 
state is given by 

P- x V(W9 nl)Co(fflz, nz) x P-. (36) 

Here 

P- =p-(ul,%;nl,nz) = $1 - ~ ( ~ l , w ) m l , ~ z ) )  (37) 
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where u(u1, UZ) = ( ~ R ) ~ ~ ( u I  - UZ) and ~(ni, n2) is given by (17). Formula (37) is a 
consequence of the general formula for p-(u, n) given in the ineoduction. 

We claim that (36) is identically zero provided that ~ ( u ,  n) can be written as a product 
of a function on the orbital variables multiplied by another function on the spin variables: 

V ( U ,  7 ~ )  = tlr(wn). (38) 

To show this, let us use the decomposition (38) in (36) together with the expression for 
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p -  given by (37). One finds that 

(36) = :(I - OV) x @(ul)e(nl)@(UZ)e(nz) x (1 - U V )  

1 
4 = - ~ ~ r ( ~ i ) + ( ~ z ) e ( n l ) e ( ~ 2 )  + (U x x U)(V x e(nl)e(nz) x V) 

- (0 x + (ul )@ (u~))(v x e (nl )e (w)) - (@ (U I ) @ (uz) x U) (e (nl )e(nz) x V) 1. 
(39) 

We recall that the twisted product of two functions on different independent variables 
is the ordinary product of these functions. Now, consider the second term in (39) first. As 
a consequence of the lemma and (26) this second term is equal to the first one. To compare 
the third and fourth term in (39). one must realize that U x U = 1 and that q x = 1. 
These formulae can be obtained directly from (6). Using them along with the lemma and 
(26), one finds that 

0 x +(uI)@(%) = x @(uI)@@z) x x 0 = +(W)+(UI) x Q (404 

v x e(nl)e(n2) = v x e(n1)e(n2) x tl x tl = e(*)e(nl) x tl (40b) 

proving that the third and fourth terms in (39) are equal. Thus, 

P- x wl)@r(U2)m1)e(n2) x P- 
= ~I@.(~~)@(~z)~(ni )B(nz)  - (0 x @ ( U ~ ) @ ( U ~ ) ) ( I I  x e(nl)e(nz))). (41) 

Next, we use the definition (6) of the twisted product restricted to the orbital variables to 
find, through a direct calculation, that 

x exp{izJ(uZ -u,)]dz. (42) 

Now, assume that +(u)f?(n) is the Wigner function of a pure state. In the language of 
the Wigner functions this is equivalent to saying that @(u)e(n) = @(u)O(n) x$(u)e(n) = 
(@(U)  x @(u))(B(n) x S(n)). This implies that 

+(U) x +(U) = $(U) and 8(n) x O(n) =e@). (43) 

Thus, @(U) and 6%) are pure states on the orbital and spin variables respectively. Our 

x @(U!)@(%) = +(ul )@(UZ) .  (44) 

next goal is to show that, in this case, one finds that 



Fermion systems and the Moyal formulation of quantum mechanics 6051 

To prove (44). @(U) must be a Wigner function of a pure quantum state, i.e. there must 
exist a vector @(z) in the Hilbert space of the single-particle states such that @(U) is the 
Wigner function of @(z). On the other hand, (44) is not true, in general, for an arbitraq 
function h(u)  on the flat phase space. Take, for instance, @(U) 1. Then, U x 1 = U # 1.  
In fact, the function identical to one is the Wigner function of the identity operator which 
is not even a density operator, since it has infinite trace. 

To prove (44). we re-interpret a formula from O'Connell and Wigner [Ill.  Let 
P(q1, pl , qz, pz) be the Wigner function of the state of two identical bosons. Then, 

P(q+Qz,P+Pz,P-92,P-PZ) 

(45) = (:r / p ( q  + q l , p  +PI,  q - q1,p - p1)e 4i@l'h-ql'Pl) dpl dp, 

where pi and pi are, respectively, the position and momentum of the ith boson (i = 1,2). 
Although O'Connell and Wigner [ll] prove this formula for bosons, it can be used in our 
case because of the arguments given thereafter. 

zz) is the wave- 
function (in Hilbert space) representing the state of two identical bosons. Then, 'B(zt, zz) 
= @(zz, 11) and its corresponding density matrix 

P(zl,z2,z;,z;) = @*(zl.zZ)@(z;,z;) (46) 

O'Connell and Wigner obtain (45) as follows [l I]. Assume that 

has the following property 

P(zl,zz,z;,Z;) =P(zl ,z2.Z; ,z;) .  (47) 

From (47), the authors obtain (45) by means of linear transformations such as 
integrations and Fourier transforms. 

In our case, let @(z) be the state in the Hilbert space whose Wigner function is @(u)t. 
Then, the vector Q(z1, zz) = @@I) @ @(zz) = @(zl)@(zz) admits @(ul)@(u~)  as a 
Wigner function, since the variables corresponding to particles 1 and 2 are independent. 
Therefore, the density matrix of this two-particle state has the following property: 

P ( Z l >  zz,.;. z;, = @~(zl)@*(zz)@(z;)@(z~) 
(48) 

Therefore, if @(ut)@(%) = 
P ( q l ,  PI,  42 ,  p2). by performing the same type of manipulation as in [ 111, we obtain (45). 
which remains valid in our case. 

first perform the following change of variables 

= @*(zl)@*(zz)@(z;)~(z~) = P(%l, zz.z;, z;,. 

This is the point of departure to arrive to (45). 

To apply (45) here (with P(ql ,pl ,  q2.p~)  = @(ud$(uz). ut = (qt,pi), i = L2). we 

(49) 1 1 I j ( u l + u Z ) = ( q > P )  p = ( ( Q I . P I )  ? ( u 2 - u 1 ) = - ( 4 z , P z ) .  

Thus, the integral in (42) becomes 

Z6 / @(q - q ~ ,  P - PI)W + 41.p + p d e x p W b  .qz - m . pz)Idm  PI. (50) 

t The Wigner function of a vector state is the Wigner function of the density operator associated wilh this vector. 
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Thus (45) gives 

1 1 @ J + q Z , P + P z ) $ ( P -  92,P-Pz) 

and it becomes evident that the right-hand side of (45a) is exactly the right-hand side of 
(42) and that 

(51) 0 x !!'(UI)!!'(W) = @(w)!!'(w) 
provided that @(U) is the Wigner function of a pure quantum state. 

Thus, (51) and (41) give 

where e(n) = $ + B . n (see (20) and (23)) and p-(nl, nz) is as in (18)'(see (27)). We 
have.aIready proven that if e(n) is a pure spin state, then (BI = &/2 which implies that 
the last formula in (52) vanishes. This proves our claim if the number of particles is equal 
to two. 

Now, let us consider a system of three identical +-spin fermions. Let pl(al), rpz(az) 
and @(a,) be the Wigner functions representing the respective individual states on phase 
space (a; = (qi. pi, ni) i = 1,2,3). The Wigner function of the compound system is then 

p-(al, a.2, a 3 )  x pl(aI)$%(a2)@(a3) x p-(al, % 0 3 )  (53) 
where 

(54) 
1 

/?-(a13 a2, 013) = - P213 - PI32 - P321 f P312 f 

Here, puov(al. az. a3) is the Wigner function of the operator realizing the permutation 
(c@y) of the wavefunction of a three-particle state. 

After (54), we can write (53) as 

(i) can be written as a product of a function of the orbital variables multiplied by a 

(ii) represent Wigner functions of a pure state. 
Since pi32 permutes 2 and 3, it is a function of a 2  and 013 only. Therefore, 

function of the spin variables; and 

I z(' -Pi32) x pl(al)$'2(aZh(a3) x f(1 -PI321 

=VI(al)[&(l -Pi32) x $%(aZ)@(a3) x $(I  -pi32)1. (56) 

The term between brackets in (56) is of the form (36) with (38) and is, therefore, equal 
to zero. This proves our assertion when the number of particles N is equal to three. 
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Remark. Clearly, there is no loss of geGerality in imposing these conditions to the labels 
2 and 3. The same result is obtained using 1 and 2 as well as 1 and 3. We also observe 
that no restriction should be imposed on the third state (in ow calculation ~ ( a 1 ) ) .  

For N 3 the Wigner function of the system is given by 

P- x ~ p l ( a i ) ~ z ( a z ) .  . . v N ( ~ N )  x P-. (57) 

If VI E fp~, we can prove that (57) vanishes identically. The proof is identical to the one 
presented here for the case N = 3 and, therefore, we omit it. We wish to note that no 
exha conditions are imposed on the Wigner functions ~ ( a 3 ) .  . . q ~ ( a ~ ) .  This proves OUT 

theorem. 0 
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